


What i1s Go?

A New Systems Programming Language



Systems Programming, What?

Systems programming means interacting with the computer
system at the lowest level to create a component of the
system itself

Application programming means making full use of
abstractions provided by the computer system to create a
useful tool for users of the system



Classic Systems Languages

x86, MIPS, other assembly languages
C

Forth
C++, Objective-C



Language Innovation

Garbage collection
Concurrency primitives
Coroutines

Obiject orientation
Namespaces

Type safety

Closures

Syntactic sugar

Etc.

These innovations are not present in classic systems
languages



Reasons for Missing
Innovations

Standardization, backwards compatibility
Unix is C, C is Unix
And Windows
Control
| want to be able to write memory leaks
Speed
Bare metal
Etc.



What does Go offer?

Type safety

Garbage collection
Object system
Namespaces
Concurrency primitives
Closures

Duck-typed interfaces
Nicer syntax



package main Simple syntax example

import (
11 OS 11
11 fmt 11

)

func GetInput(size int) ([]byte, bool) {
var input []byte = make([]byte, size)
0s.Stdin.Read(input)
return input, true

}

func main() {
text, success := GetInput(10)
fmt.Printf("%ss (%v)", text, success)



package main
import "fmt"

func main() {
results := make(chan int)

// ack acknowledge reciept and processing of last result
ack := make(chan bool)

// Caculating function
go func(yield chan<- int, ack <-chan bool) {

for i :=0; 1 < 10; i++ {
yield<-1
<-ack

}

close(yield) // causes the processing loop to quit
}(results, ack)

// Processing Loop

for result := range resuts {

fmt.Println(result);

ack<-true; // ack<-true must be the last line of the loop.
}



But...but D!

As big as C++

Less well supported
Compiler schisms
Library schisms

Not fully OSS

Hasn't taken off because of confusion in the community






